Color Space Transformation Network

نویسنده

  • Alexandros Karargyris
چکیده

Deep networks have become very popular over the past few years. The main reason for this widespread use is their excellent ability to learn and predict knowledge in a very easy and efficient way. Convolutional neural networks and auto-­‐encoders have become the normal in the area of imaging and computer vision achieving unprecedented BLOCKIN BLOCKIN accuracy BLOCKIN BLOCKIN levels BLOCKIN BLOCKIN in BLOCKIN BLOCKIN many BLOCKIN BLOCKIN applications. BLOCKIN BLOCKIN The BLOCKIN BLOCKIN most BLOCKIN BLOCKIN common BLOCKIN BLOCKIN strategy BLOCKIN BLOCKIN is to build and train networks with many layers by tuning their hyper-­‐parameters. While this approach has proven to be a successful way to build robust deep learning schemes BLOCKIN BLOCKIN it BLOCKIN BLOCKIN suffers BLOCKIN BLOCKIN from BLOCKIN BLOCKIN high BLOCKIN BLOCKIN complexity. BLOCKIN BLOCKIN In BLOCKIN BLOCKIN this BLOCKIN BLOCKIN paper BLOCKIN BLOCKIN we BLOCKIN BLOCKIN introduce BLOCKIN BLOCKIN a BLOCKIN BLOCKIN module BLOCKIN BLOCKIN that learns color space transformations within a network. Given a large dataset of colored images the color space transformation module tries to learn color space transformations that increase overall classification accuracy. This module has shown to increase overall accuracy for the same network design and to achieve faster BLOCKIN

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pedestrians Tracking in a Camera Network

With the increase of the number of cameras installed across a video surveillance network, the ability of security staffs to attentively scan all the video feeds actually decreases. Therefore, the need for an intelligent system that operates as a tracking system is vital for security personnel to do their jobs well. Tracking people as they move through a camera network with non-overlapping field...

متن کامل

A TRAFFIC-AWARE MECHANISM TO ADJUST CONTENTION WINDOW IN 802.11E WIRELESS LANS

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; ba...

متن کامل

Plant Disease Detection Using Leaf Pattern: A Review

In this review paper we discuss the various methodologies for plant disease detection. Studies show that relying on pure naked-eye observation of experts to detect and classify diseases can be time consuming and expensive, especially in rural areas and developing countries. So we present fast, automatic, cheap and accurate image processing based solution. Solution is composed of four main phase...

متن کامل

A TRAFFIC-AWARE MECHANISM TO ADJUST CONTENTION WINDOW IN 802.11E WIRELESS LANS

<span style="color: #000000; font-family: Tahoma, sans-serif; font-size: 13px; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: auto; text-align: -webkit-left; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px; display: inline !important; float: none; ba...

متن کامل

Color Space Transformation from RGB to CIELAB Using Neural Networks

Transformations in digital color imaging from RGB to CIELAB are compared between conventional ICC profiles and a newly developed neural network model. The accuracy of the transformations are computed in terms of Delta E and a comparison is made between the ICC profile and a neural network implemented in MATLAB. The transformations are used to characterize and test the color response of an Epson...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.01064  شماره 

صفحات  -

تاریخ انتشار 2015